
VHuP: a Tool to Visualize Virtual Humans

Diogo Strube de Lima, Henry Braun, Soraia Raupp Musse

Computing Science Department, Postgraduate course in Computer Science
PUCRS, Av. Ipiranga, 6681, building 32, 90619-900 Porto Alegre, RS, Brazil

{diogo.lima, henry.braun}@cpph.com.br soraia.musse@pucrs.br

Abstract

This paper presents an application which aims to
easily provide visualization and post processing of
virtual human simulations. The interactive interface
reproduces, in a real-time frame rate (30 frames per
second, FPS), a previously calculated scenario of
characters simulation, including multiples characters
and their trajectories, on different environments.
Features to control the light sources, shadows and
weather effects provide a wide range of possibilities
for visualizing and video recording the simulation
data. The application also facilitates the generation of
analyses data, generating information for a future
application, as for instance ground truth.

1. Introduction

Crowd simulation is an area of computer graphics

and artificial intelligence concerned with the process of

simulating a large number of models. Nowadays,

virtual human crowd’s simulation is an important topic

of research since it is crucial for some applications as

for instance, security, education and entertainment.

Such simulations, as the number of 3D objects involved

can be huge, are not trivial to render at high resolution

on standard computers and graphic cards [1].

Current methods to simulate virtual humans and

crowds are often mediated by local rules [2], forces [3],

flows [4] or hybrid approaches [5]. Usually, these

methods consider the characters as simplified

geometries such as points, spheres or cubes. This

abstraction is important to facilitate the usage of

complex mathematical models, however it can create

visualization artifacts when those simplified geometries

are replaced by high polygon characters, that perform a

variety of animations.

Current approaches [1, 5, 6] for crowd simulations

are designed for a specific use, and normally the

simulations prototype also includes the visualization

features, limiting the integration of different

algorithms. In our lab (Virtual Humans Laboratory, at

PPGCC, PUCRS), we used an approach which

separates the visualization from simulation aspects. In

this case, the advantage was the possibility of

integrating several simulators of virtual humans, by

mixing their output in a same visualized scenario. Our

main idea is to create an independent application for

the real-time visualization of virtual human

simulations. That application was named Virtual

Human Player (VHuP).

The paper is organized as follows: related works are

resumed on the next section, followed by section 3,

which has an overview of the VHuP architecture and its

key components. Section 4 presents some results

obtained developing and testing the application. On

section 5 the ideas for future work and new

components are described.

2. Related Work

Several researches on virtual human visualization

have been provided in last years. Hamill and

O’Sullivan [1] resumes a number of methods available

for culling such as portal, occlusion horizons, occlusion

shadow volumes and the simple bounding box tests.

The vast type of environment, such indoors and

outdoors, used on the crowd simulation makes common

the use of multiple techniques combined. The Virtual

Dublin [1] uses culling and collision techniques

combined with the trade of model details for texture

details, reducing the building’s polygons, but

increasing the memory need.

The approach of high-level wayfinding using

agent’s communication and roles, from Pelechano and

Badler [5], proposes an architecture that combines and

integrates MACES and PMFserv frameworks

increasing the crowd behavior accuracy.

The framework created by Pettre, Ciechomski,

Maïm, Yersin, Laumond and Thalmann [6] achieved

the real-time visualization of crowd simulations

combining levels of detail (LOD) techniques and

billboards, dramatically reducing the cost of animations

updates and deformations on the models.

Another work from Thalmann and Pablo [7]

presents a rendering engine to visualize a crowd of

virtual humans in real-time. The virtual humans are

sorted by their distance to the observer into render

fidelities groups. The engine combines impostors and

different rendering acceleration techniques, such as

caching schemas, levels of detail, shader and state

sorting.

3. VHuP Architecture

VHuP performs the real-time visualization of virtual

humans and crowd, using a group of open sources

platforms and toolkits. This group is coordinated by a

core, which has the main functionalities of the

application. All the services are built over this core,

providing flexibility and an easy update capability.

The features are implemented maintaining the

primary goal of the application: the ability to visualize

a variety of crowd and virtual human simulations

algorithms used on our research lab. The idea is

making the visualization process simple, reducing the

time of developing specific interfaces and avoiding any

rework. The Figure 1 is an overview of the VHuP

architecture and is followed by an explanation of each

component.

Figure 1. VHuP architecture overview.

The Core (VHuP) is the main component of the

application, responsible for executing and managing

the other components. The core coordinates the

application logic: updates, draws and events. This is

performed using the Open Scene Graph (OSG) [8]

graphic toolkit as rendering engine. It also contains

several important functionalities and interfaces for

communication between the components and OSG.

Our application uses a composite view model, in

other words, the application is allowed to place up to

five views in the scene, including a mini map view and

a record view. Those views, controlled by the View

Manager, provide a greater perspective of the

simulation allowing the possibility to focus on areas of

interest. This component handle the window resize

events, cameras and every scene data attached to each

view.

The characters are structured in three parts: model,

bones and animations. The Character Manager

organizes this structure in memory and is in charge of

all actions related to characters along the simulation.

The component uses the 3D Character Animation

Library (Cal3D) [9] through the Cal3D adapter for

OSG (osgCal2) [10] to perform animations. It also

provides hardware skinning, avoid streaming dynamic

data to GPU, and animation blending, smoothly playing

animations.

The Light Manager allows determining how the

environment’s illumination should be. It is possible to

add and modify lights sources customizing the scene

and increasing the simulation realism.

The shadows created by the light sources are also

controlled by this component. These shadows can be

modified, changing the shadow appearance, type,

quality or even disabling it to obtain the desired

tradeoff between performance and graphic quality.

In order to increase the graphic quality and realism

of the visualization, there is also the Weather

Manager. This component is capable of creating

weather effects such as fog, rain, snow and clear

weather.

The Camera Manager component allows

navigating in the scenario easily. It uses the OSG

camera architecture making it possible to set camera

manipulator to each point of view in the application.

Our default camera manipulator is similar to strategy

games cameras.

The Microsoft Windows-based application uses

messages in order to handle events. Those messages,

sent by other applications, keyboard or mouse, are

handled by the Input Manager. The features of this

component are the input buffer, computer pens and

parallel communications. The input buffer supports

multiple pressed keys. Computer pens can be used and

the pressured sensitivity is also controlled. The parallel

communication makes possible an interaction with

other applications such as eyes and gesture recognition.

Audio Manager performs the simulation audio and

uses the Ambiera IrrKlang Audio Library [11] to

provide support to different audio file formats such as

MP3, OGG and WAV. The additional files are

previously loaded before the simulation rendering

avoiding possible slowdowns.

VHuP has a friendly Graphic User Interface

(GUI) granting access to the application functionalities

easily and in a fast way. The GUI architecture is

component based and was built over the OSG event

handlers classes. This approach allows compatibility

with OSG applications and new components are added

with no effort. Each component of the GUI have a set

of events related to it, the actions to each event are

easily customized. The mouse click is an event

example and coloring a button when it’s clicked is a

simple action. The architecture divides the GUI

components on three layers: window, forms and

objects. Buttons, images and textboxes are examples of

objects. A group of objects are organized in forms, and

the GUI scope is the window.

The Video Recorder uses a separated view to

record on a set of image files. Those images are

recorded on a chosen frame rate and with a custom

graphic quality, relative to the recording view. The files

are compressed and filtered using any video software,

as the Virtual Dub, resulting on a video file.

This Simulation Input receives all the simulation

data files and is responsible to read and parse the data.

These files are the xml defining the simulation, the

application configuration xml and the meshes. Those

meshes are supported on different formats, such as

OSG, 3DS and OBJ.

4. Results

The results were obtained executing VHuP on a

AMD 64 x2 Dual Core 4200+, 2GB RAM DDR,

equipped with a GeForce 8800GTS OC. The frame-

rate difference (measured in FPS) between the higher

and lower graphic quality is easily visible when a

simulation with a small number of characters is

rendered.

When the number of agents increases, the

computational time for high quality rendering is

decreased. This shows that using finer techniques,

shadows and weather effects are not the bottleneck of

the application. Figure 2 shows a graphic where FPS

obtained as a function of changing rendered number of

characters is presented.

Figure 2. FPS related to the number of characters.

The application's bottleneck is visible when

rendering more than 300 characters. The virtual

humans animation's update is bounded to the computer

processing unit (CPU), requiring a large amount of

process. This issue makes the higher quality, illustrated

at Figure 3, with the best tradeoff between

performance and graphic quality.

Figure 3. VhuP at high quality.

5. Future Work

The obtained results were acquired with the first

VHuP version. On the second version new techniques

will be studied and implemented to improve the

graphic quality and to increase the number of

characters rendered in real-time.

The graphic quality could be improved using

shaders to better render lights and different materials,

so rendering realistic water and fire effects becomes

possible. Different techniques for creating shadows and

weather effects could be performed. Higher polygon

characters could also be used, adding LOD and culling

techniques [1].

Those techniques, combined with impostors and

rendering acceleration techniques [7], could also

increase the number of character rendered in real-time.

At last, creating a database for characters animations

and models, could increase both the graphic quality and

the performance of the application.

6. Acknowledgements

We thank all the support from Marcelo Paravisi and

Rafael Rodrigues during the development and test of

the VHuP. Besides being authors of the VHSimul

project, they created unique simulations and gave

important ideas for the application. This work was

developed in collaboration with HP Brazil R&D.

7. References

[1] J. Hamill, C. O’Sullivan, J “Virtual Dublin – A

Framework for Real-Time Urban Simulation”, WSCG, 2003.

[2] S. R. Musse, and D. Thalmann, “Hierarchical model for

real time simulation of virtual human crowds”, IEEE
Transaction on Visualization and Computer Graphics, 2001,
pp. 152-164.

[3] D. Helbing, I. Farkas, and T. Vicsek, “Simulating

dynamical features of escape panic”, Nature, 2000, pp. 487-
490.

[4] A. Treuille, A. Lewis, and Z. Popovic, “Model

reduction for real-time fluids”, SIGGRAPH, 2006.

[5] N. Pelechano, and N. Badler, “Modeling Crowd and

Trained Leader Behavior during Building Evacuation”, IEEE
Computer Graphics and Applications, Volume 26, 2006, pp.
80-86.

[6] J. Pettre, P. H. Ciechomski, J. Maïm, B. Yersin, J. P.

Laumond, and D. Thalmann, “Real-time navigating crowds:

scalable simulation and rendering”, Computer Animation and
Virtual Worlds, Volume 17, 2006, pp. 445–455.

[7] P. S. H. Ciechomski, and D. Thalmann, “Rendering

Massive Real-Time Crowds”, Thèse nº 3534 - École
Polytechnique Fédérale de Lausanne, 2006.

[8] Open Scene Graph (OSG), open source high
performance 3D graphics toolkit,
http://www.openscenegraph.org/, accessed July 20, 2008.

[9] 3D Character Animation Library (Cal3D), skeletal based
character animation library,
https://gna.org/projects/cal3d/, accessed July 20, 2008.

[10] Cal3D adapter for OpenSceneGraph (osgCal2), adapter
of cal3d for use inside OSG,
http://osgcal.sourceforge.net/, accessed July 20, 2008.

[11] Ambiera IrrKlang Audio Library, high level 2D and 3D
cross platform sound engine and audio library,
http://www.ambiera.com/irrklang/, accessed July 20,
2008.

http://www.informatik.uni-trier.de/~ley/db/conf/wscg/wscg2003.html#HamillO03
http://portal.acm.org/citation.cfm?id=1179352.1141962&coll=GUIDE&dl=GUIDE&CFID=38439807&CFTOKEN=74069258
http://portal.acm.org/citation.cfm?id=1179352.1141962&coll=GUIDE&dl=GUIDE&CFID=38439807&CFTOKEN=74069258
http://www.openscenegraph.org/
https://gna.org/projects/cal3d/
http://osgcal.sourceforge.net/
http://www.ambiera.com/irrklang/

	1. Introduction
	2. Related Work
	3. VHuP Architecture
	4. Results
	5. Future Work
	6. Acknowledgements
	
	7. References

