
VhCVE: A Collaborative Virtual Environment Including Facial Animation

and Computer Vision

Henry Braun, Rafael Hocevar, Rossana B. Queiroz, Marcelo Cohen, Juliano Lucas Moreira, Julio C. Jacques Júnior, Adriana
Braun, Soraia R. Musse, and Ramin Samadani*

Graduate Programme in Computer Science
PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS, Brazil

*Hewlett Packard Laboratories
1501 Page Mill Rd., Palo Alto, CA, USA

Figure 1: Snapshpts from VhCVE platform.

Abstract

In this paper we present a platform called VhCVE, in which rel-
evant issues related to Collaborative Virtual Environments appli-
cations are integrated. The main goal is to provide a framework
where participants can interact with others by voice and chat. Also,
manipulation tools such as a mouse using Computer Vision and
Physics are included, as well as rendering techniques (e.g. light
sources, shadows and weather effects). In addition, avatar anima-
tion in terms of face and body motion is provided. Results indicate
that our platform can be used as a interactive virtual world to help
communication among people.

Keywords:: CVE, Facial Animation, Avatars, Computer Vision

Author’s Contact:

{henry.braun, rafael.hocevar}@cpph.pucrs.br
{rossana.queiroz, marcelo.cohen,
julio.silveira,soraia.musse,adriana.braun}@pucrs.br
ramin.samadani@hp.com

1 Introduction

Many years ago, at the beginning of Virtual Reality (VR) area, peo-
ple expected to have a new interface where they could interact with
others, in a parallel world. The application which probably summa-
rizes this expectation is the CVE (Collaborative Virtual Environ-
ment). CVEs are three-dimensional computer-generated environ-
ments where users are represented by avatars and can navigate and
interact in real-time, independently of their physical location [Fré-
con 2004].

In CVEs, VR and Computer Graphics (CG) technologies are used
to immerse multiple individuals in a single shared space. Such
environments support a range of activities, e.g. virtual conferenc-
ing [Frécon and Nöu 1998] and games 1. Although new technolo-

1http://secondlife.com/

gies are available, CVEs still present relevant challenges, such as
human-computer interaction in the virtual world, real-time render-
ing and animation, how to control and interact with avatars, among
others.

In our platform we use OpenGL for low level rendering process
(such as facial animation) and the graphics engine Irrlicht 2 for
shading and other functions in the graphics pipeline. The advan-
tage of using a graphics engine for rendering is the optimization
and the faster coding. Other aspects are also important in CVEs,
such as:

• Avatars animation (body and face);

• voice tools;

• chat tools;

• functions to provide object interaction (Physics);

• human-computer interaction based on Computer Vision (CV);

• real-time frame rates, among others.

In this work, we propose a modular approach, i.e. a number of sep-
arate modules are composed together in order to provide the CVE
functionalities. The advantage is the possibility of integrating sev-
eral toolkits, by combining their output in the same application. Our
platform helps to create an application for real-time visualization of
virtual humans, allowing the best possible interaction among con-
nected people. The CVE is called Virtual Humans Collaborative
Virtual Environment-(VhCVE).

The paper is organized as follows: related works are described in
the next Section, followed by an overview of the VhCVE archi-
tecture and its key components. Section 4 presents some results
obtained and, finally, section 5 describes the ideas for new compo-
nents and final remarks.

2http://irrlicht.sourceforge.net/

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

195



2 Related Work

Nowadays, a rather well known CVE is Second Life. It offers the
exploration of a 3D virtual world, allowing the user to create his/her
own avatar, as well as walking and flying to different 3D envi-
ronments. In this system, it is also possible to use voice and text
communication for more realistic human interactions. Other well
known CVE is Playstation Home 3: integrated with every PS3 sys-
tem, it brings a large community of users allowing them to chat,
walk around, see movies, customize their avatars and play games.
In the Home world it is possible to see several advertisements such
as movie trailers and game releases.

Few surveys have been published in literature about CVEs. In
2004, Emmanuel Frécon [Frécon 2004] presents a very complete
overview of CVEs since 1990s. Also, Frécon discusses proposed
standards as well as system trends. In 2008, Wright [Wright and
Madey 2008] describes APIs, frameworks and platforms used to
build CVEs.

The report by [Wright and Madey 2009] led to another publication.
The authors propose the survey with two main goals: first, to con-
cisely review several prominent, active desktop-VR technologies,
and, second, to recommend the technology or technologies most
well suited to building a CVE.

According to the classification proposed in [Wright and Madey
2009], in this paper we describe a CVE platform which uses Irrlicht,
OpenCV, OpenGL, and other components, as later described.

3 CVE Architecture

VhCVE performs real-time visualization of virtual humans in 3D
environments using a set of libraries and toolkits, where most of
them are open source. Figure 2 illustrates architecture components
and subcomponents. The components are the main modules in the
architecture: Application Manager, Core and State Manager, while
subcomponents are related to specific purposes. All subcomponents
have an initialization process and most of them contain an update
function, e.g. Webcam and Network Managers which are related
with image capturing and packet communication, respectively.

The visualization is performed using Irrlicht rendering engine. This
engine includes important functionalities and interfaces for commu-
nication among components. Irrlicht is an open source engine, and
uses either DirectX or OpenGL in order to create 3D scenarios and
animations. Other components are described next. One possible
output of CVE is the Video Recorder, responsible for calculating
the elapsed time between each frame and grab a screenshot of the
scene. The files can be compressed and filtered using any video
processing software. Next Section presents components and sub-
components of VhCVE, while in Sections 3.2 and 3.3 Computer
Vision and Facial Animation features are described.

3.1 Components and Subcomponents

There are three main components which are responsible for execut-
ing and managing the subcomponents. The Core component coor-
dinates the subcomponents initialization and it is also responsible
for the display functions. The State Manager defines the finite
state machine used to control VhCVE, sending events/request to be
treated by the Application Manager. This last component send
tasks to be executed into the subcomponents, as required. In next
sections we present further details about subcomponents organized
in three main topics: Interfaces, Characters and Visualization.

3.1.1 Interfaces

In DirectX or OpenGL environments, the Graphics Processing Unit
(GPU) hardware is represented by a software entity called device.
The Device Manager allows to access the required device from any
other subcomponent. One of integrated devices aims to perform
physic calculations. Physics is an important part of games, for this

3http://www.us.playstation.com/PS3

Figure 2: CVE architecture overview.

reason we use a library called IrrPhysx 4, which is a PhysX wrapper
for the Irrlicht graphics engine.The main idea of this wrapper is
to abstract the PhysX SDK methods from the user. Instead, we
just have to use a simple interface into Irrlicht. Using PhysX, we
are able to simulate the behavior of several kinds of objects like
rigid and articulated bodies, cloths, fluids and terrains, which can
be interesting in CVE applications. Figure 3 shows an example of
rigid bodies with animation.

Figure 3: Rigid bodies with animation.

VhCVE has a simple graphics user interface (GUI) allowing access
to the framework functionalities in an easy and fast way. The GUI
Manager subcomponent is based on Irrlicht GUI toolkit classes,
and also is responsible for creating and updating GUI components
such as labels and buttons.

To perform the Internet connection and voice over IP communica-
tion there is a component called Network Manager, which uses an
input file containing the server IP and port for connection (it is used
in the CVE initialization). RakNet is a cross-plataform C++ game
network engine 5. This network engine is easily integrated with Ir-
rlicht. RakNet is responsible for creating the peers, receiving and
sending data packets to the server. This server keeps receiving the
players positions, rotations, text messages (illustrated in Figure 4)

4http://chris.j.mash.googlepages.com/irrphysx
5http://www.jenkinssoftware.com/

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

196



and facial status. After that, it sends all the data to the players in
order to provide visualization.

Figure 4: Chat communication.

The RakVoice toolkit is a feature of RakNet. This toolkit allows
voice communication in real-time among connected users into the
chat room. The RakVoice is attached into the RakNet device, af-
ter that it is necessary to specify the size of the audio that will be
encoded at a time. RakVoice provides the means to encode and
decode sound data. In order to listen to the sound, a sound en-
gine is required to provide other audio features such as mute, play
and stop. Every time a user speaks in the microphone the audio
is buffered and sent to the server, which in turn is responsible for
sending it to the other players. Our framework is not capable yet to
treat avatars proximity in terms of spatial sound, so in this case the
voice communication works for everybody online in the room.

To handle sound output, Irrlicht allows the use of a library called
Ambiera IrrKlang Audio Library6. The Audio Manager performs
the environment audio and provide support to different audio file
formats such as MP3, OGG and WAV. This is the default library for
sound output enabling stereo and 3D sound sources. It is important
that CVEs support full 3D environmental sounds in a intelligent
way. Every sound emitting entity must have a radius distance at-
tached, determining the reachability and the volume of the emitted
sounds in order to prevent mixing of distant sounds, hence produc-
ing unrealistic environments.

Any webcam can be used to capture images. Then the Webcam
Manager handle these images as frames and process them using
OpenCV allowing to create applications such as CVMouse and Vir-
tual Mirror, explained in Sections 3.2.1 and 4.

3.1.2 Characters

The virtual characters are structured in four parts: body model,
bones, animations and facial animation. The Character Manager
manages this structure in memory and it is in charge of all ac-
tions related to characters along the simulation, except the facial
animation. The body animation is executed through Irrlicht Ani-
matedMeshSceneNodes. The bone system allows attaching objects
to the characters, such as a briefcase or a hat. The facial anima-
tion uses other subcomponent called VHFace Manager to handle
the character’s facial expressions. Further details are explained in
Section 3.3.

The Simulation Input is a module responsible for integrating our
CVE with external simulators. It receives the simulation data file
and it is responsible for reading and parsing it. This file has XML
format and defines a simulated scenario containing positions of vir-
tual characters, among other data. With this feature it is possible to
have NPC (Non Player Characters) interacting into the CVE world,
e.g. crowd simulation [Musse and Thalmann 2001].

6http://www.ambiera.com/irrklang/

3.1.3 Visualization

The Light Manager allows determining how the environment illu-
mination should be. It is possible to add and modify light sources
customizing the scene and increasing the environment realism. The
shadows created by the light sources are also controlled by this
component.

In order to increase the graphic quality and realism of the visual-
ization, we can use the Weather Manager. This component is ca-
pable of creating weather effects such as fog, rain, snow and clear
weather. For better visualization results the Shader Manager al-
lows the use of different rendering techniques e.g. bump mapping,
cartoon shader (illustrated in Figure 5). These shaders are written
in OpenGL Shading Language (GLSL) [Rost 2005].

Figure 5: Cartoon shader example.

For terrain generation we can use the Terrain Manager subcom-
ponent, built upon Irrlicht TerrainSceneNodes. This subcomponent
manage terrains created by a height map input and also integrate
the terrain mesh with PhysX.

The Camera Manager subcomponent allows the user to explore
the scene in a practical way. It provides three types of camera nav-
igation, also making it possible to change navigation styles at any
point of the application. The possible styles are: i) FPV (First per-
son view), allowing to navigate like a first person point of view; ii)
TPV (Third person view) aims the camera at the main avatar; and
SCV (Static camera view), which fixes the camera, enabling the
mouse to control the framework menus.

3.2 OpenCV

OpenCV [Bradski and Kaehler 2008] is largely used by scientific
communities for facial tracking among other applications. In this
work we propose to integrate Irrlicht and OpenCV in order to pro-
vide interaction tools based on computer vision algorithms. Indeed,
this integration is very easy since OpenCV and Irrlicht has similar
“frame loops”, providing a solution without extra callbacks imple-
mentation. The image captured through OpenCV can be dealt in
Irrlicht display loop, eliminating the need of a new thread or call-
back function.

3.2.1 CVMouse

The objective of CVMouse is to work as a pointer/scratch interface
improving the human-computer interaction. Using a webcam and
computer vision algorithms, CVMouse is able to simulate the states
of the mouse. The idea is to track a learned-based color distribution
and generate a mouse state, based on previous information.

The CVMouse states are, but not limited to: (i) capturing mouse
position; (ii) clicking the mouse with the left button; (iii) clicking
and holding the left button; (iv) releasing the left button. Basically
only the first two stages could be used in machine-interaction appli-
cations, but the following ones are implemented with the objective
of using them in drawing applications, such as a pencil in a painting
system (or to drag and hold things).

In this work we use the YCbCr color space as color representation,
but probably many other color spaces could be used, such as HSV
or Lab. The idea is to use a color invariant feature to be more robust
with illumination changes. Another used information is the area of
the tracked object. This can be used to estimate the distance to the

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

197



object from the camera. With the information of the position of
the object through time and their distance from the camera, we can
simulate the states of a virtual mouse.

To learn the color distribution, we fix a colored object in a specific
region, as shown in Figure 6, and for the channels Cb and Cr we
compute their median value and standard deviations. We do not use
the ’Y’ information, with the objective to be lighting invariant. It
is important to notice that the color of the adopted object must not
be visible in any other location of the scene, because the tracking
system will track the largest object with the detected color.

Figure 6: Learning color distribution.

Creating a color model Let S be a vector (with size = n) com-
posed by the pixel values captured over the predefined region, in the
Cb channel. Firstly we compute their median and standard devia-
tion values (m and σ, respectivally).

Before create a color model, we remove some outliers, in a simple
way, as described in Eq. 1:

Snew(i) =

{

Sj if ‖Sj −m| ≤ 2 · σ, (for j = 1 to n)
else , (1)

then we recompute the standard deviation (σ) over the new vector
Snew. Thus, we can create a more robust color model. We apply the
same method to the Cr color channel. After the outliers removal ap-
proach, our color model is composed of C(m1, σ1, m2, σ2), where
m1 is the median of channel 1 and σ1 is their standard deviation
(respectively for the second channel).

Background subtraction For each pixel (x, y) in the whole
image captured from the camera, we compute the absolute differ-
ence over the median values (for the channels Cb and Cr). We de-
fine the foreground pixels as the ones whose difference are lower
than a predefined threshold (K = 6, obtained by experiments), as
can be seen in equation 2:

BCb(x,y) =

{

1 if ‖Cb(x, y)−m1‖ ≤ K · σ1

0 else . (2)

The final binary image is composed by an AND operator over the
two channels (BCb and BCr).

Some morphological operators (closing and opening) are used to
eliminate small artifacts and to close small holes in the resulting
binary image.

States definition To simulate the states of the mouse, we mon-
itor the position of the tracked object in time and their size. In our
application we use the last N frames (N = 30, obtained by experi-
ments) as mouse tail, to generate the states of the simulated mouse.
In a general way, each state is described as follows:

• state (i) capturing mouse position: the centroid of the biggest
object (after the background removal) is defined as mouse po-
sition in each frame;

• state (ii) clicking the mouse with the left button: if, in the
last N frames, the position of the mouse do not change very
much (it means that it stop to move) and its area increases at a
predefined threshold (Tc) and after decrease approximately to
the initial area, we assume that the mouse was clicked (Tc =
3× initial area, obtained by experiments);

• state (iii) clicking and holding the left button: if, in the last N
frames, the position of the mouse do not change very much (it
means that it stop to move) and its area exceeds a predefined
threshold (Tc) and remains, we assume that the mouse was
clicked and hold;

• state (iv) releasing the left button: the same as state (ii).

When the user simulates the click of the mouse with the CVMouse,
the position of the cursor usually changes a lot. To prevent that the
user clicks in erroneous positions, we fix the last detected position
of the object after the system detect that the object stopped to move.
In this way, the user can click in a very specific location. Figure 7
shows an example of object tracking.

Figure 7: CVMouse tracking an object.

3.3 VHFace - Facial Animation

Another challenge in the project of a CVE is to provide real-time
generated facial animation to the avatars. The facial animation
module, called VHFace Manager, integrates the framework pro-
posed by Queiroz et al. [Queiroz et al. 2009], based on XFace core
libraries [Balci 2004]. The framework follows the MPEG-4 Facial
Animation (FA) standard [Pandzic and Forchheimer 2003] for pa-
rameterization and animation of faces. The standard specifies a set
of 84 feature points (FPs) located on the 3D face mesh. A subset of
them acts as control points for the 68 Facial Animation Parameters
(FAPs), also defined in the standard.

The two first FAPs describe high-level actions (6 facial expressions
and 14 visemes) and the remaining deal with specific regions of the
face, describing low-level actions, such as “raise left cornerlip” and
“close top left eyelid”. The FAPs are encoding as numerical values,
which are measured by a set distances of key-features of the face,
called FAPU (Facial Animation Parameter Units).

A FAP-based animation provides, for each animation frame, the
variation of the FAP values. Thus, for each frame, we have a stream
of these values. In order to optimize the sending of these streams
through the network, a bit mask is also sent indicating which of the
68 FAPs are active (i.e. had values changed) in the frame.

Having the FAP stream, it is necessary to deform the face skin ver-
texes to produce the animation. Each FAP acts over one FP and its
neighborhood (influence zone) vertexes, producing a deformation
in the mesh. This means that each FAP value is scaled by its FAPU
to provide the displacement of the FP vertex and the vertexes of its
influence zone can be deformed through the application of differ-
ent functions, such as cosine [Balci 2004] and radial basis [yong

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

198



Noh et al. 2000; Wu et al. 2006] functions. The information about
the FAPU, FPs and their influence zones of a 3D mesh (the Face
Definition Parameters – FDP) are described in files called FDP.

In this context, the VHFaceManager has two main modules (see
Figure 8):

• The CV2FAP/FDL2FAP module, which receives as input
Computer Vision data or high-level face actions and maps it
to FAPs, according to Queiroz et al. [Queiroz et al. 2009]
methodology. The high-level face actions include facial ex-
pressions, lip synchronization and eye behaviors, using the
FDL script language (Facial Description Language), also de-
scribed in [Queiroz et al. 2009].

• The FAP2MeshDeformation module, which receives the FAP
streams provided by the CV2FAP/FDL2FAP module or re-
ceived by the network and performs the deformation in the
3D mesh, according to the FDP model data.

CV Data

Pre-scripted

animation

(FDL)

3D Mesh

FDP Data

Webcam 

Manager

FAP Streams

VhCVE Core

CV2FAP

FDL2FAP

FAP2Mesh 

Deformation

VhFace Manager

Network

Manager

Speech 

Files

Figure 8: Diagram of the VhFaceManager Architecture

Note that FAP values are independent of the 3D model. These val-
ues are scaled by the FAPU, providing the displacement of the af-
fected FPs. The influence zone of each FP is affected by a deforma-
tion function, also according to the FAP direction. So, a FAP-based
animation can be performed by different face models.

4 Results

This section presents some preliminary results aiming to explore the
features robustness of the proposed framework. Figure 9 shows an
application in a city environment which allows the user to explore
it with an avatar.

Figure 9: VhCVE system display.

Using the CVMouse model presented in Subsection 3.2.1, we built
an application that allows the user to draw in the screen by moving
a colored real object, as showed in Figure 10.

We also implemented an application called “Virtual Mirror”, in
which the characters “mimic” the facial movements of the user. It

Figure 10: Illustration of CVMouse-based application.

explores the functionalities of the VHFace and Webcam Manager
modules, using facial feature detector algorithms (for face, eye and
mouth regions) from OpenCV [Viola and Jones 2001; Castrillón
et al. 2007]. The mapping of the detected features to simple events
(opened mouth, closed mouth, smile and direction of the horizontal
gaze) and then to FAP animations is implemented according to the
methodology of Queiroz et al. [Queiroz et al. 2009]. Once infor-
mation from face components is acquired, it is used to animate the
avatar’s face, as shown in Figures 1 and 11.

Figure 11: Illustration of Virtual Mirror application, integrating
OpenCV and VHFace.

As a result of preliminary performance tests, the framework bot-
tleneck is visible when rendering more than 110 characters. The
virtual human animation update is bound to the computer process-
ing unit (CPU), requiring a large amount of CPU time. On the
other hand, with static virtual humans (without body animations),
the amount of rendered characters has increased to 360 while keep-
ing a frame rate of 24 frames per second. Each virtual human con-
tains 3686 triangles. The results were obtained executing VhCVE
on a Intel E8500 Core 2 Duo, 4GB RAMDDR2, equipped with two
GeForce 8800GTS OC 320MB in SLI mode.

5 Final Remarks

This paper presented a framework for collaborative virtual environ-
ments integrating several toolkits and computer vision algorithms.
Moreover, it is possible to use the framework physics and network
features to create different styles of multiplayer games, such as first
person shooters or online role playing games.

The obtained results were acquired with the current VhCVE ver-
sion. For the next version, we plan to include new techniques in
order to improve the graphics quality and to increase the number of
characters rendered in real-time. For instance, new shaders could
be used to provide better lighting and also to offer new effects such
as realistic water and fire. Also different techniques for shadow cre-
ation and weather effects could be implemented. Finally, the use of
LOD (level-of-detail) and culling techniques, combined with im-
postors and rendering acceleration techniques [Ciechomski 2006],
could increase the amount of characters rendered in real-time.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

199



References

BALCI, K. 2004. Xface: Mpeg-4 based open source toolkit for 3d
facial animation. In AVI ’04: Proceedings of the working confer-
ence on Advanced visual interfaces, ACM Press, New York, NY,
USA, 399–402.

BRADSKI, D. G. R., AND KAEHLER, A. 2008. Learning opencv,
1st edition. O’Reilly Media, Inc.

CASTRILLÓN, M., DÉNIZ, O., GUERRA, C., AND HERNÁNDEZ,
M. 2007. Encara2: Real-time detection of multiple faces at dif-
ferent resolutions in video streams. J. Vis. Comun. Image Repre-
sent. 18, 2, 130–140.

CIECHOMSKI, P. S. D. H. 2006. Rendering massive real-time
crowds. PhD thesis, EPFL.

FRÉCON, E., AND NÖU, A. A. 1998. Building distributed virtual
environments to support collaborative work. In VRST ’98: Pro-
ceedings of the ACM symposium on Virtual reality software and
technology, ACM, New York, NY, USA, 105–113.

FRÉCON, E. 2004. A Survey of CVE Technologies and Systems.
SICS Technical Report T2004:03. Swedish Institute of Com-
puter Science.

MUSSE, S., AND THALMANN, D. 2001. Hierarchical model for
real time simulation of virtual human crowds. IEEE Transactions
on Visualization and Computer Graphics 7, 2, 152–164.

PANDZIC, I. S., AND FORCHHEIMER, R., Eds. 2003. MPEG-4
Facial Animation: The Standard, Implementation and Applica-
tions. John Wiley & Sons, Inc., New York, NY, USA.

QUEIROZ, R. B., COHEN, M., AND MUSSE, S. R. 2009. An
extensible framework for interactive facial animation with facial
expressions, lip synchronization and eye behavior. Comput. En-
tertain. (to appear).

ROST, R. J. 2005. OpenGL(R) Shading Language (2nd Edition).
Addison-Wesley Professional.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on 1, I–511–I–518 vol.1.

WRIGHT, T. E., AND MADEY, G. 2008. A survey of collaborative
virtual environment technologies. Tech. rep., University of Notre
Dame - USA.

WRIGHT, T. E., AND MADEY, G. 2009. A survey of technolo-
gies for building collaborative virtual environments. The Inter-
national Journal of Virtual Reality 8, 1, 53–66.

WU, Z., ZHANG, S., CAI, L., AND MENG, H. M. 2006. Real-
time synthesis of chinese visual speech and facial expressions
using mpeg-4 fap features in a three-dimensional avatar. In
INTERSPEECH-2006.

YONG NOH, J., FIDALEO, D., AND NEUMANN, U. 2000. An-
imated deformations with radial basis functions. In VRST ’00:
Proceedings of the ACM symposium on Virtual reality software
and technology, ACM, New York, NY, USA, 166–174.

VIII Brazilian Symposium on Games and Digital Entertainment Rio de Janeiro, RJ – Brazil, October, 8th-10th 2009

200


