
A Simple Model for Real Time Sky Rendering
Henry Braun and Marcelo Cohen

Graduate Programme in Computer Science - PUCRS
Av. Ipiranga, 6681 - Building 32 - Porto Alegre/RS - Brazil

Figure 1: Pictures from our sky rendering prototype.

Abstract

This paper presents a model for sky rendering in real time provid-
ing day and night cycle animation with a good visual acceptance.
Digital games present a set of various genres, some of these games
requires outdoor experiences, including day and night cycles. The
model proposed in this paper aims to provide a simple technique
for sky rendering with minimal graphic processing unit (GPU) and
computer processing unit (CPU) costs. This model could be em-
ployed in several types of games and applications. Results indicate
that our real time animation are visually accepted and have minimal
impact on application performance.

Keywords:: Sky, Rendering, Day And Night, Shader, Cycle, Ani-
mation, Real Time.

Author’s Contact:

henry.braun@acad.pucrs.br,
marcelo.cohen@pucrs.br

1 Introduction

The technological advances in hardware architecture and software
engineering allowed the creation of even more realistic scenarios.
In order to create more attractive and entertaining games, game de-
veloper companies can benefit from the usage of day and night cy-
cle experience. Besides the rendering, these cycles are employed in
order to create different gameplay aspects. For example, Warcraft
III 1 explores different Non Player Characters (NPC) behaviors ac-
cording the time of day, such as world visibility and “sleep time”
for some enemy troops.

Another set of digital games employ realistic sky rendering tech-
niques, such as Red Dead Redemption2 and Witcher II3. Those
games provide good looking outdoor scenes, illustrated in Figure
2 and 3, respectively. However obtaining the accurate sky color can
be computationally expensive[Preetham et al. 1999], since the at-
mosphere consists of air molecules density, sunlight intensity, cam-
era and sun positioning and many other attributes.

This paper presents a model for real time day and night cycles ani-
mation, with minimal impact on application performance, allowing
the GPU and CPU to be available for other purposes such as Artifi-
cial Intelligence (AI), network updates and etc. Our method is easy
to implement, as we use a dynamic color based skybox, further de-
tailed in Section 3.3, combined with several layers to render stars,
clouds and any other important sky features such as the sun.

The paper is organized as follows: related work are described in the
next Section, followed by the description of our model in Section 3.

1http://classic.battle.net/war3/basics/daynight.shtml
2http://www.rockstargames.com/reddeadredemption
3http://www.en.thewitcher.com/

Figure 2: Example of light conditions presented in the Red Dead
Redemption game.

Figure 3: Example of day and night cycle presented in the Witcher
II game.

Some results are shown in Section 4 while in Section 5 some future
work is mentioned as well as final considerations.

2 Related Work

Dobashi et al. [Dobashi et al. 1997] developed a method for sky ren-
dering using basis functions. Their method express the sky color in-
tensity distribution by previously calculating each sun altitude sam-
pled at a certain interval. This approach requires a small amount
of memory usage and enables the sun and camera positions to be
altered. Figure 4 illustrates their results with to different light con-
ditions, morning (left) and evening (right).

Preetham et al. [Preetham et al. 1999] created an analytic model
for daylight. Their main goal is to approximate the full spectrum

Figure 4: Dobashi et al. results illustrating to different light con-
ditions: morning (left) and evening (right).

daylight for a set o atmospheric conditions achieving much accu-
racy as possible without sacrificing usability. They also verify their
results against standard literature from atmospheric science. Figure
5 illustrates their results for morning and evening.

Figure 5: Preetham et al. results for morning (left) and evening
(right).

Jensen et al. [Jensen et al. 2001] present a physically-based model
of the night sky for realistic image synthesis. Their work calculates
the illumination coming from the Moon, the stars, zodiacal light
and the atmosphere. Their model shows a variety of night scenes
based on an accurately predict of the appearance of night scenes
using physically-based astronomical data for position and radiome-
try. They also include position, magnitude and temperature for the
visible stars. Figure 6 illustrates their night sky.

Figure 6: Jensen et al. result for their night sky.

Another important work in sky rendering was developed by Habert
et al. [Haber et al. 2005] Their main goal is to realistically simu-
late the twilight phenomena for a wide range of different climate
conditions. They present a physically-based simulation of the twi-
light phenomena computing the sky colors before sunrise and after
sunset. Figure 7 illustrates the twilight phenomena as their result.

Yang et al. [Yang et al. 2009] explain about several visual effects in
computer games. Their article overviews the fixed pipeline main is-
sues and also the programmable pipeline, including topics as global
illumination, environmental and sensor effects. For each technique
is provided classification regarding it flexibility, complexity and
computation stage.

Many of the sky rendering techniques described are not able to be
computed in real time. In contrast to previous work, our method
presents a good looking and fast technique for sky rendering, easy
to implement with minimal GPU and CPU impact.

Figure 7: Habert et al. twilight phenomena result illustration.

3 Our Model For Sky Rendering

A challenging task in sky rendering is to provide good visual results
when combining the sky with other 3D elements, i.e. terrain, trees
and buildings. The technique illustrated in our model uses the clas-
sic linear fog rendering technique[Akenine-Möller et al. 2008] to
envelop the elements and enhance the distance perception, provid-
ing a feeling of a long view distance. By adjusting the fog color we
are able to provide good scene luminance regarding visual effects,
including sunrise and sunset, described in Section 3.1.

The first step in our model consists in obtaining a few parame-
ters defined by the user. These parameters are the minimum and
maximum factor for each RGB component. These parameters are
processed by the Luminance Manager module, further detailed
in Section 3.1, responsible in obtaining the light intensity for each
given time of our day. For this reason it is necessary a CPU timer.
After calculating the light intensity these values are sent to other
modules.

The Fog Manager, further detailed in Section 3.2, is responsible
in painting the scene fog accordingly the color provided by the Lu-
minance Manager module. The Skybox Manager, explained in
Section 3.3, is only for coloring the skybox with the given color, if
the user decides to do not use a skybox, the same color should be
used as clear color. At last there is the Layer Manager, detailed in
Section 3.4. This module is in charge of controlling the layers that
define the moon, stars, clouds and any other sky feature. Figure 8
illustrates an overview of our Model for Real Time Sky Rendering.

Figure 8: An Overview of our Model for Real Time Sky Rendering.

3.1 Luminance Manager - Sunrise and Sunset

The sunrise and sunset effects are computed only in two moments,
both defined by the user. These periods are defined by δhf . This
approach allows the CPU and GPU to be available to perform other
tasks along the other hours of the day.

In order to create the sunrise and sunset effect, we isolate each com-
ponent from the RGB. For each component we decide the minimum
lmin and maximum lmax amounts of strength each should have.

We also must specify the interval δhf we desire the sunrise effect to
occur. The light factor l for the sunrise effect is illustrated in equa-
tion 1, where cht describes the current hour time (24 hour format),
cmt describes the current minute time and st the start time.

l = lmin+ δlf · (cht− st) · 60 + cmt

δhf · 60 , (1)

The dusk effect is very similar, instead we need to provide the max-
imum amount of light strength in the equation. The light factor for
the sunset effect is illustrated in equation 2.

l = lmax− δlf · (cht− st) · 60 + cmt

δhf · 60 . (2)

The morning curve, described by equation 1, is currently a linear
segment representing the crescent sunlight strength amount. Figure
9 illustrates the morning curve during the period from 5:00am to
9:00am, where the y−axis describes the light factor from 0 to 250
and the x− axis express, in minutes, the morning period.

Figure 9: Illustration of the morning curve during the period from
5:00am to 9:00am.

The evening curve, described by equation 2, is also a linear seg-
ment representing the decreasing sunlight strength amount. Figure
10 illustrates the evening curve during the period from 5:00pm to
9:00pm, where the y-axis shows the computed light factor from 250
to 0 and the x-axis express, in minutes, the evening period.

Figure 10: Illustration of the evening curve during the period from
5:00pm to 9:00pm.

With those values of light we specify the final color for each frame.
This color is used as the ambient light, a uniform light for the whole
scene. Besides that we use the same color for coloring the sky and
the fog.

3.2 Fog Manager

Fog is a simple atmospheric effect that is performed at the end of the
rendering pipeline[Akenine-Möller et al. 2008]. There are several
purposes for using this fog effect, in our model, the fog is used to
hide the objects sliced by the far plane4. We create the fog effect

4A plane representing the camera farthest viewing distance, any objects
beyond the far plane are not drawn.

in the GPU, hence it is necessary to provide the near plane and far
plane distances. In our prototype we use the linear fog technique
combined with the original colors of the objects.

The pixel shader is used only to create the fog for the scene 3D
elements. A pseudo-algorithm is presented in Listing 1, illustrating
the pixel shader steps used for fog rendering.

1 / / C o n s t a n t s
2 c o n s t f l o a t f F o g F a r D i s t = 4 0 . 0 f ;
3 c o n s t f l o a t f F o g N e a r D i s t = 3 0 . 0 f ;
4
5 / / Computing t h e f o g f a c t o r based on t h e f a r p l a n e and t h e near p l a n e
6 c o n s t f l o a t f D e l t a F o g = f F o g F a r D i s t − f F o g N e a r D i s t ;
7 f l o a t f F o g F a c t o r = clamp ((f F o g F a r D i s t − V e r t e x P o s i t i o n . z) / fDe l t aFog , 0 . 0 , 1 . 0) ;
8
9 / / C o l l e c t i n g t h e o r i g i n a l c o l o r

10 vec4 vTexColor = (t e x t u r e 2 D (C o l o r e d T e x t u r e S a m p l e r , TexCoords) ;
11
12 / / M u l t i p l y t h e f o g c o l o r f o r b e t t e r v i s u a l i z a t i o n
13 vTexColor ∗= FogColor ;
14
15 / / Computing t h e f i n a l c o l o r w i t h t h e f o g c o l o r and f o g f a c t o r
16 vec4 v F i n a l C o l o r = f F o g F a c t o r ∗ vTexColor + (1 . 0 − f F o g F a c t o r) ∗ FogColor ;
17 re turn v F i n a l C o l o r ;

Listing 1: Pseudo-algorithm illustrating the pixel shader steps
used for the fog effect.

3.3 Single Color Based Skybox Manager

Our skybox is a cube involving the main camera and this cube is
never tested in the Z-Buffer. It is important to mention that our
skybox cube contains only background color information. In our
prototype, the values obtained for representing the sunlight strength
are used as the ambient color and fog color, as explained in Sections
3.1 and 3.2. To tint our skybox we use this same color, this approach
creates the combining effect between all scene elements. Painting
operations are usually slow when using the CPU, but since our sky
contains only one color information, the skybox can be represented
using only 4 pixels, one for the left, right, front and back. The top
and bottom part can be painted with any other color that the user
may like. This approach reflects in a small impact on the application
performance. In case the user decide to paint all the skybox with the
same color, then this coloring technique may be perform using the
clear color. On the other hand clouds and other sky features cannot
be represented.

3.4 Layer Manager - Stars, Moon and Clouds

The sky is composed by several elements, but as explained in Sec-
tion 3.3, our skybox presents only color information, making im-
possible to create common sky elements, such as clouds and stars.
Some of these elements must be represented in order to increase
the scene realism. We create these features using a layer for each
component, assuring that each layer is never tested in Z-Buffer, and
the texture is repeated along its geometry surface. This creates a
result similar to the skybox, that these elements cannot be hidden
by fog or the far plane. For more realism the texture coordinates
can be displaced along the time in order to create a moving illusion
i.e. clouds.

All the layers are always drawn, but they must contain alpha infor-
mation. The layers alpha value can be simply adjusted accordingly
the light factor l, for daylight components (i.e. clouds and the sun)
the alpha factor af is illustrated in equation 3 and for nighttime
components (i.e stars and the moon) the alpha factor is illustrated
in equation 4.

af = l − lmin, (3)

af = 255− (l + lmin). (4)

4 Results

The results are obtained using an Intel Xeon E405 equipped with
NVidia Quadro FX 4800. For rendering, our prototype uses Irrlicht
Engine5. Figure 11 illustrates the sunrise and sunset effect from 8
o’clock in the morning to 9 o’clock in the night.

5http://irrlicht.sourceforge.net/

http://irrlicht.sourceforge.net/

Figure 11: Illustration of the sunrise and sunset effect from 8
o’clock in the morning to 9 o’clock in the night.

Figure 12 illustrates the sunrise effect from 8 o’clock in the morning
to noon.

Figure 12: Illustration of the sunrise effect from 8 o’clock in the
morning to noon.

By changing the Light Parameters
¯

we can achieve different atmo-
spheric visual results. Figure 13 illustrates a snow scene with the
brightest(left) and the darkest(right) moment of the day using the
following set of parameters presented in Table 1.

Channel Min Max
R 35 200
G 35 200
B 35 200

Table 1: Light Parameters for the snow environment.

Figure 13: Illustration of a snow scene with the brightest(left) and
the darkest(right) moment of the day.

Figure 14 illustrates a simple desert atmosphere: in order to cre-

ate this scene we used the following set of parameters presented in
Table 2.

Channel Min Max
R 35 188
G 35 172
B 35 146

Table 2: Light Parameters for the desert environment.

Our prototype runs at 70 fps with all the modules enabled, disabling
the sky rendering technique the frame rate increases up to 73 fps.

Figure 14: Illustration of a simple desert atmosphere, with the
brightest(left) and the darkest(right) moment of the day.

Figure 15 illustrates a green forest using the following set of pa-
rameters presented in Table 3.

Channel Min Max
R 35 150
G 35 158
B 35 085

Table 3: Table containing the Light Parameters for the forest atmo-
sphere.

Figure 15: Illustration of our green forest in two different moments
of the day.

5 Final Considerations

This paper presented a model for sky rendering under different light
conditions. In order to achieve better visual results the sky should
be improved, creating a system of texture layers to provide the sub-
tle sky color variations. It is also important that the sunlight color
factor variation is represented exponentially and not linear [Dobashi
et al. 1997], as such approach would represent the sky color varia-
tion with a higher degree of realism.

References

AKENINE-MÖLLER, T., HAINES, E., AND HOFFMAN, N. 2008.
Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA.

DOBASHI, Y., NISHITA, T., KANEDA, K., AND YAMASHITA, H.
1997. A fast display method of sky color using basis functions.
In The Journal of Visualization and Computer Graphics, 115–
127.

HABER, J., MAGNOR, M., AND SEIDEL, H.-P. 2005. Physically-
based simulation of twilight phenomena. ACM Trans. Graph. 24
(October), 1353–1373.

JENSEN, H. W., DURAND, F., DORSEY, J., STARK, M. M.,
SHIRLEY, P., AND PREMOŽE, S. 2001. A physically-based
night sky model. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’01, 399–408.

PREETHAM, A. J., SHIRLEY, P., AND SMITS, B. 1999. A prac-
tical analytic model for daylight. In Proceedings of the 26th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, SIGGRAPH ’99, 91–100.

YANG, X., YIP, M., AND XU, X. 2009. Visual effects in computer
games. Computer 42, 48–56.

	Introduction
	Related Work
	Our Model For Sky Rendering
	Luminance Manager - Sunrise and Sunset
	Fog Manager
	Single Color Based Skybox Manager
	Layer Manager - Stars, Moon and Clouds

	Results
	Final Considerations

