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Figure 1: In (a) and (c) real images of cracks in concrete are presented. In (b) and (d), results obtained with our model based on Leaf
venation method are illustrated.

Abstract

This paper presents a model for generating 2D cracks in real-time
for application in games and cartoon animations. Cracks are gener-
ated based on a method previously used for leaf venation patterns.
We describe a procedural model to generate cracks that can be cus-
tomized for application in games, generating different visual results
depending on interactive parameters. Results were visually evalu-
ated by users and indicate that hypothesis to adopt leaf venation
patterns to generate cracks is valid and possible for interactive ap-
plications.
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1 Introduction

Simulation of cracks and fractures in real-time are still a challenge.
It is due to the fact that Physical simulations require computational
power, and when included in a game development, it can compete
with many others technical processing. Some work are related in
literature describing techniques to provide realistic simulations of
3D and surface cracks and fractures, however none of them have
been integrated in real-time applications, as discussed in Section 2.

This paper presents a model to provide 2D cracks in real-time, fo-
cused on games and cartoons animations, based on leaf venation
patterns. The used model was proposed by Runions et al. [Runions
et al. 2005]. Our hypothesis is that same procedural technique used
to model leaf venations can be used to generate of some type of
cracks. So, we used and adapted such model, as well as evaluated
obtained results.

This paper is organized as follows: in Section 2 we present some
methods described in literature to generate cracks and fractures.
Section 3 succinctly describes the original model proposed by
Runions et al. [Runions et al. 2005], while in Section 4 we de-
scribe our adaptations to generate cartoon 2D cracks in real-time.
Obtained results are presented in Section 5, while final discussions
and future work are presented in Section 6.

2 Related Work

There are some methods proposed in computer graphics domain
which aim to generate crack surfaces, and they are often grouped
into two categories. One of them follows a non-physical approach
for generating crack patterns, such as mapping crack patterns to a
surface. Other category uses physically based methods to generate
cracks. Our work is focused on first category, since we use a space
colonization algorithm to consider regions where to generate the 2D
cracks.

Some work in literature present techniques for modeling fracture in
solid materials, using physically based simulation. Terzopoulos et
al. introduced simulating elastic [Terzopoulos et al. 1987] and in-
elastic deformation of objects, including fractures generation [Ter-
zopoulos and Fleisher 1988]. Mass-spring [Norton et al. 1991] and
finite elements [O’Brien and Hodgins 1999] techniques were later
used to generate fractures. Federl and Prusinkiewicz used finite ele-
ments to model cracks formed by drying mud and tree bark [Federl
and Prusinkiewicz 2002],[Federl and Prusinkiewicz 2004].

There are some non-physical approaches to generating surface
cracks. One type of approach uses an input pattern or image to gen-
erate surface cracks. Is the case of methods proposed by [Martinet
et al. 2004], [Desbenoit et al. 2005] and [Mould 2005].

In contrast, our method creates cracks based on space colonization
algorithm proposed by [Runions et al. 2005]. We adapted such al-
gorithm in order to provide visually acceptable results in 2D cracks,
for animation and generation in real-time, focusing on games appli-
cation and cartoon animation.

3 The Model to Create Leaf Venation Pat-
terns

The method proposed in this paper is based on the space coloniza-
tion algorithm, which was originally proposed to model leaf vena-
tion patterns [Runions et al. 2005].

The venation model simulates three processes within an iterative
loop: leaf blade growth, the placement of markers in the free space,
and the addition of new veins. The markers correspond to sources
of the plant hormone auxin, which, according to a biological hy-
pothesis [Aloni et al. 2003], emerge in the growing leaf regions not
penetrated by veins. A set of auxins S interacts with the vein pat-
tern, which consists of a set of points V called vein nodes. This
pattern is extended iteratively toward the auxins of free space. The
auxins that are approached by the advancing veins are gradually re-
moved, since the space around them is no longer free. As the leaf
grows, additional auxins of free space are added in the space be-



tween existing veins and other auxins. This process continues until
the growth stops, and there are no auxins left.

The interplay between auxins of free space and vein nodes is at the
heart of the space colonization algorithm. During each iteration, a
vein node is influenced by all the auxins closer to it than any other
vein node. Thus, veins compete for auxins, and thus space, as they
grow. There may be several auxins that influence a single vein node
v: this set of points is denoted by S(v). If S(v) is not empty,
a new vein node v′ will be created and attached to v by an edge
representing a vein segment. The node v′ is positioned at a distance
D from v, in the direction defined as the average of the normalized
vectors toward all the auxins s ∈ S(v). Thus, v′ = v+Dn̂, where

n̂ =
n

‖n‖ and n =
∑

s∈S(v)

s− v

‖s− v‖ . (1)

The distance D serves as the basic unit of distance in the model and
provides control over the resolution of the resulting structure. Once
the new nodes have been added to V , a check is performed to test
which, if any, of the auxins of free space should be removed due to
the proximity of veins that have grown toward these points.

The space colonization algorithm has subsequently been adapted
to model trees [Runions et al. 2007]. Beyond the extension to 3D
structures, the algorithm for trees introduced the notion of the radius
of influence, which limits the distance from which auxins of free
space can attract tree nodes. Furthermore, the set of auxin points is
usually predefined at the beginning of simulation and no new auxins
are added afterwards, since, in contrast to the expanding leaf blade,
the space in which a tree grows remains fixed.

Next section describes our model to create 2D cracks based on ve-
nation patterns for interactive applications.

4 The Model to Create 2D Cracks

This section describes all required adaptations made in original
model in order to generate cartoon 2D cracks. Firstly, we dis-
cuss the method used to colonize the space, then we present the
main characteristics of our model as well as steps used to customize
cracks generation.

4.1 The Colonization Algorithm

Runions et al [Runions et al. 2005] proposed the generation of aux-
ins based on Dart Throwing algorithm [Cook 1986]. Auxin sources
emerge at locations that are farther than a threshold birth distance
from the other sources, and farther than a threshold birth dis-
tance bv from the vein nodes. In original model, authors compute
these points using a version of the dart-throwing algorithm [Cook
1988], [Mitchell 1987], which controls the regularity of the ve-
nation patterns. The drawback is the computational cost of dart-
throwing algorithm, since it consists of repeatedly generating points
distributed at random, then testing each new point against all points
already in the set. A point that is sufficiently far from other points
is accepted as a new member of the set.

In our case, we adopted a pseudo-regular grid in order to generate
the markers (as we called instead of auxins) used to populate the
space. The markers are randomly placed in the vertex of a grid,
which number of cells are defined by the user. The randomicity
process, i.e. to generate or not an auxin on a vertex, is used in order
to provide aleatory cracks, and should keep a pre-defined percent-
age of space colonized. Figure 2 illustrates the markers and shows
a growing crack. It is important to emphasize that it is not the first
time the Runions model is used for other goals. It has been used to
simulate the motion of crowds of virtual humans [Rodrigues et al.
2009].

Yet, one can change the number of lines and columns existent in
the grid. Figure 3 shows two images using different number of
lines and columns. On the left, used resolution is 20x20, while on
the right is 100x100.

Figure 2: Image illustrates the created markers using pseudo-
regular grid and beginning of a crack generation.

Figure 3: Two images illustrating different resolution of lines and
columns in the grid used to colonize space with markers. On the
left the resolution is 20x20, while on th right is 100x100.

4.2 Cracks Generation

The crack starts its veins from an initial point. For simplification,
in this paper, we consider only a fixed start point in the center of the
image, but we can easily change configuration in order to provide
cracks growing from any initial location. It could be the application
of a shooter game, for instance. Moreover, we can develop cracks
starting at more than one location simultaneously. Consequently,
cracks generated in glass surfaces could present better visual re-
sults, if for example all starter points could be located in the region
defined in the center of the crack (see Figure 11).

Once the initial position is defined, the crack starts to evolve. Based
on the computation proposed by Runions et al [Runions et al. 2005]
and described in Section 3, new crack nodes (in original model they
are called vein nodes) are created, and lines are drawn between
them.

Firstly, the algorithm should find out which markers (m) are close
to each crack node c. This set of markers is denoted by S(c). If
S is not empty, a new crack node c′ is created and attached to c.
Afterward, lines are drawn between c and c′. The node c′ is posi-
tioned at a predefined distance D from c, in the direction defined
as the average of the normalized vectors toward all the markers m
close to c, c′ = c+Dn̂, where

n̂ =
n

‖n‖ and n =
∑

m∈S(c)

m− c

‖m− c‖ , (2)

similarly to Equation 1.

Following parameters are the full list considered in our model:

1. kill distance: responsible for defining the threshold distance
from crack node to markers that should be removed (default
value is equal to 0.01). Figure 4 illustrates two images gen-
erated using two different values for kill distance parameter.
In a) kill distance is equal to 0.01, while in b) is 0.1. It
is possible to see that image a) generates more crack nodes
than in b). Other parameters used in these simulations are:
D = 0.2, crack radius = 0.9, num iterations = 100
and num lines grid = num column grid = 7.



Figure 4: Two images illustrating different values for
kill distance parameter. In a) kill distance is equal to
0.01, while in b) it is 0.1. It is possible to see that image a)
generates more crack nodes than in b).

2. D: distance from a crack node to create another node (default
value is equal to 0.1). Depending on the used value, crack
segment generated between two crack nodes are smaller, for
small D, or larger for large D. In Figure 5(a), the default
value is used, while in (b) D is equal to 0.04. It is possi-
ble to see that image a) generates less crack nodes than in b).
Other parameters used in these images are: kill distance =
0.08, crack radius = 0.9, num iterations = 100 and
num lines grid = num column grid = 20.

Figure 5: Two images illustrating different values for D distance
parameter. In a) D is equal to 0.1, while in b) it is 0.04. It is
possible to see that image a) generates less crack nodes than in b).

3. num interaction: this parameter describes number of inter-
actions executed during the simulation (default value is equal
to 100).

4. num lines grid and num columns grid: describe the
number of lines and columns included in the pseudo-grid used
to generate markers (default value is equal to 20). We called it
as pseudo-grid since not all vertex in the grid generates mark-
ers, due to the fact that is randomly decided. Figure 3 illus-
trates two images containing different resolutions in the grid.

5. crack radius: is the space around the crack nodes where
markers are evaluated to find out the close nodes to be as-
sociated, and consequently generate new crack node (default
value is equal to 0.9). This parameter has been proposed in
original model and maintained in our method. As the value
of crack radius is decreased, more instability exists among
markers which should influence the generation of new crack
node. This influence is visually represented as the curva-
ture present in final produced cracks. In Figure 6 it is pos-
sible to observe this characteristic when comparing images
(a) and (b), where crack radius used are 0.5 and 20.0, re-
spectively. Other parameters used in these simulations are:
kill distance = 0.1, D = 0.2, num iterations = 100 and
num lines grid = num column grid = 20.

6. line growth: describes the line width growing as a func-
tion of hierarchy of crack nodes (default value is equal to
0). This parameter was included to improve the realism of
generated cracks, specifically in clay and concrete surfaces.
If line growth is different to 0, after a crack node c gen-
erates all possible c′, the line width (lw) used to draw the
crack segments is increased by a growing factor computed us-
ing line growth and the number of generated crack nodes
c′: lw = line growth.n c′, where n c′ is related with the
number of generated c′. Figure 7 shows two images illus-

Figure 6: Two images illustrating different values for
crack radius parameter. In a) crack radius is equal to
0.5, while in b) it is 20.0. It is possible to see that image b)
generates straighter crack segments than in a).

trating the effect of line growth parameter. In (b) we can
observe the variation in line width generated as a function
of hierarchy process of cracks generation. Other parame-
ters used in these simulations are: kill distance = 0.08,
D = 0.2, num iterations = 100 and num lines grid =
num column grid = 20.

Figure 7: Two images illustrating different values for line growth
parameter. In a) line growth is equal to 0.5, while in b) it is 0.0.
It is possible to see that image b) generates varied lines width as a
function of cracks hierarchy in generation process.

7. Visualization parameters are related with visualization aspects
of the generated cracks. Such parameters are represented with
boolean data (TRUE/FALSE). They are: draw markers (an
example is illustrated in Figure 2), used to visualize the mark-
ers in the space; draw connections allows the line draw
among crack nodes c′ generated from same c. This param-
eter was proposed in order to improve the visual quality of
generated cracks in glass surfaces. Yet, background image
is related with an image used in the background of the crack.
Figures 8 and 9 show images comparing the effect of these
two last parameters.

Figure 8: Two images illustrating the effect of draw connections
parameter. In a) draw connections is FALSE, while in b)
it is TRUE. Other parameters used in these simulations are:
kill distance = 0.02, D = 0.2, num iterations = 80 and
num lines grid = num column grid = 20.

A last visualization parameter draw islands is used to gen-
erate specific pattern in the cracks, by creating connec-
tions among close crack nodes. The difference between
draw connections and draw islands is that the first one
draws connections among crack nodes generated in the same
level, while the last one connects crack nodes close to each
other. Figure 10 shows the impact of draw islands parame-
ter.

Next section discusses obtained results. We conducted a survey



Figure 9: Two images illustrating the effect of background image
parameter. In a) background image is FALSE, while in b) it is
TRUE (so, it is possible to chose the background image file). Other
parameters used in these simulations are: kill distance = 0.08,
D = 1.0, num iterations = 100 and num lines grid =
num column grid = 7.

Figure 10: Two images illustrating the effect of draw islands pa-
rameter. In a) draw islands is FALSE, while in b) it is TRUE.
Other parameters used in these simulations are: kill distance =
0.02, D = 0.2, num iterations = 80 and num lines grid =
num column grid = 20.

with subjects in order to evaluate the results of our method. Con-
siderations about such evaluation is also discussed in this section.

5 Results

In this section we show some results obtained by using our proto-
type. Furthermore, results have been evaluated by 84 subjects in
a survey format. Results of such evaluation are also presented in
this section. It is important to say that our model does not aims to
present realistic results but cracks for cartoon and games.

We specified our results in three type of materials: clay, glass and
concrete. Furthermore, we offer a visual comparison with real im-
ages from real life, available on the internet. For first simulations,
trying to simulate glass surfaces, we used following parameters:

• kill distance = 0.02;

• D = 0.8;

• num iterations = 80;

• crack radius = 1.0;

• num lines grid = num column grid = 20;

• draw markers = FALSE;

• background image = glass.bmp;

• draw connections = FALSE for black lines and TRUE
for white lines;

• line growth = 0 for black lines and 0.5 for white lines; and

• draw islands = FALSE.

Figures 11 and 12 show results of crack generation for glass sur-
faces, as well as real cracks, captured from real scenes.

We also generate cracks trying to simulate the effect of concrete
surfaces by specifying following values for our parameters:

• kill distance = 0.08;

• D = 1.0;

(a) (b)

Figure 11: (a) Images generated by using our model; (b) Real ef-
fect of cracks in glass surfaces.

(a) (b)

Figure 12: ((a) Image generated by using our model; (b) Real effect
of cracks in glass surfaces.

• num iterations = 100;

• crack radius = 0.4;

• num lines grid = num column grid = 7;

• draw markers = FALSE;

• background image = concrete.bmp;

• draw connections = FALSE;

• line growth = 1; and

• draw islands = FALSE.

Figures 13 and 14 show results of crack generation for concrete
surfaces.

(a) (b)

Figure 13: (a) Image generated by using our model; (b) Real effect
of cracks in concrete surfaces.

Lastly, we changed parameters in order to simulate cracks in clay
surfaces. From the three types of simulated surfaces, clay cracks
present more difficulties since in real life it generates very visible



(a) (b)

Figure 14: (a) Image generated by using our model; (b) Real effect
of cracks in concrete surfaces.

clusters of surfaces, when it cracks. That was the main motivation
for us to propose the draw islands parameter. However, we be-
lieve better results could be achieved in a future work, as discussed
in next Section. Simulation of cracks in clay surfaces is certainly a
limitation of the current version of our model. In images illustrated
in following Figures, we used following parameters:

• kill distance = 0.08;

• D = 0.8;

• num iterations = 100;

• crack radius = 0.4;

• num lines grid = num column grid = 20;

• draw markers = FALSE;

• background image = brown.bmp, gray.bmp;

• draw connections = FALSE; and

• line growth = 0.5.

Figures 15, and 16 show results of crack generation for clay sur-
faces. In Figure 15 the parameter draw islands was set to
FALSE, while in Figure 16 it was set to TRUE.

(a) (b)

Figure 15: (a) Image generated by using our model; (b) Real effect
of cracks in clay surfaces.

All the simulations (from the beginning until the final image gener-
ation) are processed in real time (more than 30 FPS). More specif-
ically, the computational time is dependent of the number of con-
sidered markers. Low frame rates were achieved when simulating
glass surfaces (30 FPS), while high frame rates were achieved in
concrete surfaces (more than 100 FPS). The crack generation can be
performed to generate also an animation, as illustrated in 3 frames
from 100 processed, as showed in Figure 17.

5.1 Evaluation

In order to visually evaluate our results, we conduct a survey where
approximately 84 subjects observe images generated in our model,
and answered 3 simple questions, regarding the three surfaces we

(a) (b)

Figure 16: (a) Image generated by using our model including
draw islands process; (b) Real effect of cracks in clay surfaces.

(a) (b) (c)

Figure 17: Frames of animation to generate crack in glass sur-
faces.

worked on (concrete, glass and clay). Subjects should answer
if images simulating cracks were a) totally similar, b) similar, c)
marginal d) different and e) totally different, which weights for an-
swers were included in interval [5; 1], respectively.

Figure 18 shows the results obtained with experiments including
approximately 90 subjects opinions. We can observe that best eval-
uated scenario occurred when we simulated concrete surfaces, fol-
lowed by glass. The simulation of cracks in clay surfaces obtained
low scores in subjects evaluation, as expected, mainly due to the
fact that clusters and separated polygons can not be observed, when
using our model. Even if we set draw islands as TRUE. This is
a main current limitation of our model and should be improved in
next work.

Figure 18: Result of evaluation obtained in survey answered by
approximately 90 subjects regarding 3 simple questions about the
visual quality of cracks simulating e different surfaces: clay, glass
and concrete.

5.2 Rendering

Our original rendering approach for obtaining results generates a
diffuse map containing the crack form. In 3D environments we
can change our rendering technique transforming the original map
into a normal map. This map contains the original surface normals
combined with the crack normals obtained through our model. The
normal map describing the crack surface is combined with a relief
mapping technique [Oliveira et al. 2000], this creates the illusion of
depth in the wall cracks. Figure 19 illustrates the normal map com-



bined with relief mapping technique in a concrete surface presented
in a 3D environment.

Figure 19: Rendering technique using normal map describing the
crack surface combined with a relief mapping technique.

For real time animations we can also employ the normals map ren-
dering technique. Instead of storing a previous generated crack sur-
face as a normal map texture, we create it dynamically in order to
generate the animation frame by frame. An example of glass break-
ing in three frames is illustrated in Figure 20.

Figure 20: Glass breaking animation in three frames.

6 Final Considerations

This paper presented a model for cracks generation based on space
colonization algorithm, originally used for leaf venation modeling.
Our model is focused on providing crack generation for cartoon and
games, since the model is not Physically coherent. We propose a
model based on few parameters: 5 parameters for geometric crack
generation and 5 for visualization purposes. These parameters have
been investigated and varied in order to investigate the crack simu-
lation in three specific surfaces: clay, glass and concrete. All results
are achieved in real time, and provide generation of crack image, as
well the animation of the hole process.

In addition, our model has been qualitatively evaluated. Approx-
imately 90 subjects evaluated obtained results in terms of visual
quality. This analysis showed that clay surfaces obtained low score
of subjects answers and more work should be done in this scenario.
Future work involves improve the crack generation in clay surfaces,
and also provide the subdivision of geometry, by generation poly-
gons and consequently fractures of surfaces.
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