
CrowdVis: A Framework For Real Time Crowd
Visualization

ABSTRACT
Crowd visualization is present mostly in digital games and
computer animated movies, but are also observed in simula-
tions and virtual reality applications. In crowd simulations
we should represent the behavior of agents given different
scenarios, and also, such simulations can be provided by
different softwares and tools. This paper presents a frame-
work for real time crowd visualization, that no programming
knowledge and modeling skills are required from the users.
Our main goal is to be able to visualize previously created
crowd simulations in real time, combining rendering tech-
niques and providing easy support for managing the scene
and the virtual humans.

Keywords
Crowd Simulation and Visualization; Rendering.

1. INTRODUCTION
Game engines, as Unity 3D1 and Unreal Engine2, are eas-

ily accessible to general users, providing tools and mecha-
nisms for displaying 3D graphics and creating games. These
and other engines rarely provide focus on real time crowd
visualization, besides that such engines require a certain set
of programming skills and also artists for creating coherently
the scene assets and the Virtual Humans (VHs).

In order to provide a good visualization of crowds, usually
a certain set of features must be presented. Firstly, it needs
to be capable to work with simulations coming from differ-
ent models or tools. Secondly, when visualizing crowds, we
should consider factors as VHs motion, animation, knowl-
edge about others agents in the simulation and also the in-
teractions among them. Another important subject that
must be considered is that the simulation and the visualiza-
tion need to be conservative, i.e. the visualization needs to
represent exactly what is going on the simulation.

1http://www.unity3d.com
2http://www.unreal.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

In this work we present CrowdVis, a framework to be han-
dled either by naive or experienced users. The goal is to
provide tools and enable the users to visualize, in 3D envi-
ronments, previously created crowd simulations. The main
contribution of this paper is a framework able to easily visu-
alize simulations of virtual humans generated in any crowd
simulator, since the outputmust include only agents posi-
tions as a function of time. Specifically, CrowdVis can cre-
ate embodied agents, with animations as well, and proposing
visual behaviors for agents interactions. Moreover, several
rendering features are included.

The paper is organized as follows: next, we present the
related work, while in Section 3 we present a way to produce
crowd simulations. Our framework is detailed in Section 4.
Results are presented and discussed in Section 5 and after,
some final considerations are discussed.

2. RELATED WORK
Different approaches can be observed in the literature re-

garding crowd visualization. Related work can consider a
set of factors, as rendering, mesh manipulation, texturing,
behavior analysis, VH’s reconstruction and so on.

Games and crowd simulation models can generate inter-
actions among virtual humans in order to create dynamic
and realistic scenes. Algorithms to perform those interac-
tions have been improved by researchers over the last few
years. It is known that several solutions were already cre-
ated for interaction at specific artificial intelligence’s models
or virtual environments, but solutions aiming to provide vi-
sual representation of interaction behaviors are not common.
Thalmann and Becheiraz [2] worked in a nonverbal commu-
nication and interpersonal relationship model between VHs,
consisting in reactions and social interactions in the pres-
ence of other agents. Besides interpersonal relationships,
they also analyze the VHs walking, such as a sad walk or
happy walk, these postures also have influence on the be-
havior of others, increasing the believability of the VHs in
social interactions.

According to [3], only seeing at the psychological notion
of gesture is insufficient to capture movement qualities need
by animated characters. For this reason they presented a
3D character animation system called EMOTE. This system
applies effort and shape qualities to independently define
underlying movements, and thereby generates more natural
synthetic gestures for the characters. The main difference in
comparison with our approach is that we provide a module
to generate visual behaviors, which can be displayed as body
animation or any other visual representation. But mainly, in

our approach, the interaction behavior is generated without
changing the simulation, treated as a posprocessing analy-
sis, since it is used for already simulated situations. The
main goal is to improve the realism and believability of the
visualization and the techniques employed can also be used
for other applications such as games or any other real time
simulations.

Tecchia et al. [15] describes a set of techniques for ren-
dering crowds in real time. Their approach is not only con-
cerned with the human behaviors and collision detection in
crowds, but also in optimizations techniques for fast ren-
dering, which includes shadows and quality shading. Using
what they called “Pre Computed Impostors” as an Image-
Based Rendering (IBR) technique and the availability of
large texture memory buffers, they maximized rendering
speed.

Hamill and O’Sullivan [9] resume a number of methods
available for culling such as portal, occlusion horizons, oc-
clusion shadow volumes and the simple bounding box tests.
The vast type of environment, such indoors and outdoors,
used in the crowd simulation makes common the use of
multiple techniques combined. The Virtual Dublin [9] uses
culling and collision techniques combined with the trade of
model details for texture details, reducing the building’s
polygons, but increasing the memory need.

The framework created by Pettre et. al. [14] achieved
the real time visualization of crowd simulations combin-
ing Levels-of-Detail (LOD) techniques. Their LOD tech-
niques were combined with billboards, which dramatically
reduced the cost of animations updates and deformations in
the models. Another work from [4] presents a rendering en-
gine to visualize a crowd of VHs in real time. The VHs are
sorted by their distance to the observer into render fideli-
ties groups. The engine combines impostors and different
rendering acceleration techniques, such as caching schema,
Level-of-Detail, shader and state sorting.

Kavan et al. [12], propose an approach focusing on ren-
dering animated characters for large crowds in real time.
They propose a method that reduces the amount of mem-
ory necessary for rendering crowd impostors. Their method
creates the image, used for rendering a virtual human, as
a 2D polygonal texture providing more visual fidelity and
delivering a variety of animations with almost no memory
overhead.

3. CROWD SIMULATION
This section presents a way to simulate crowds and gen-

erate data to be used as input in our framework. The model
considered in this step, aiming to provide crowd simulation
data, was proposed by [6] and was inspired in a biologi-
cal algorithm, based on competition for space in a coher-
ent growth of veins and branches. Since this original model
presents free-of-collision motion and group formation tech-
nique, we use such method to provide collision avoidance in
our method as well. This method reproduces groups and
agents motion and their interactions into the environment.
As in the original model, the environment is represented by
a set of markers (dots) used to create a space discretiza-
tion. Together with the markers, we create a grid of nodes
in the space where the motion is allowed. The nodes will
be used as reference to the A* path planning algorithm [10].
While agents move from their initial location to their target
by using the nodes in the environment, at each time step,

we verify the presence of other agents, obstacles and other
groups, in order to avoid collision.

According to [11] we can represent the environment in a
semantic way and provide motion of groups of agents across
the environment. To this, we generate the main input pa-
rameters for the simulation:

1. Total time of simulation;

2. The number of agents. In this case, the simulation pro-
cess is responsible for creating and killing the agents
(e.g. at the beginning and ending of a party) in order
to attain the expected density of agents at a specific
period of the simulation (e.g. low, medium or high).

3. Groups distribution presented in a certain population,
i.e. how many agents are not grouped (individuals)
or grouped in groups of two or three agents; and iv)
the distribution of interest, entry and spawn locations
(spaces or objects in the semantic environment) where
agents should be created or go to.

It is also possible to simulate events, i.e. situations that
modify the state of the environment, which reflect directly
in the behavior of the agents in the affected area. When the
event occurs, the agents immediately start to move to the
defined safe points. We define as safe points regions that
are comfortable/safe for the agents to be in. For example, if
an event of rain starts, the agents should go to a protected
place where they feel comfortable, like under an awning (a
safe point).

At the end of this process, we are able to provide the
simulation XML file with information meaning the agents
trajectory across the time. The trajectory is composed by
the agents position for each frame of simulation. The sim-
ulation XML is used together other inputs information in
CrowdVis. It is important to observe that this is just a sim-
ple way to provide CrowdVis inputs. Different models can
be used in order to provide the specified inputs.

4. CROWDVIS: A CROWD VISUALIZATION
FRAMEWORK

The focus of our work is to provide a framework for crowd
visualization that enables any user to load and play previ-
ously created simulations without any programming, model-
ing and animating knowledge. Visualizing such simulations
requires a set of data, i.e. virtual humans, terrains, virtual
environments. Our framework is responsible for providing a
set of functionalities which are:

• loading and reconstructing VHs;

• loading and manipulating scenarios and assets;

• loading and manipulating the simulation playback;

• controlling of VHs behaviors; and

• managing rendering features, special effects and scene
illumination.

An overview of CrowdVis is illustrated in Figure 1, where
it is possible to observe the three main modules: Recon-
struction of Virtual Humans, Behavior Analysis and Audio-
Visual Module .

Figure 1: Overview of CrowdVis. It is possible to ob-
serve the three main modules (Virtual Human Re-
construction, Behavior Analysis and Audio-Visual)
and their respective inputs.

4.1 Virtual Humans Reconstruction
Our model is able to reconstruct virtual humans from a

single image. VHs semi-automatic reconstruction process
can provide a fast way to create VHs models, with few or
any designer intervention. According to this, in our model,
we are able to populate virtual worlds using a set of different
reconstructed VHs aiming to improve the agents variability
during the crowd visualization. We adopted the work from
[1], that pipeline phases are illustrated in Figure 2, where
the user can quickly create different VHs from different sin-
gle images. Such pipeline, considering the input image, is
composed by four steps: 3D Pose Identification, Human Seg-
mentation, Silhouette Processing and VH Reconstruction.

4.2 Behavioral Analysis Module
The behavioral analysis module was developed with main

goal to read the simulation data (set of 3D points over the
time) and after an analysis process, to improve the results of

Figure 2: The VHs reconstruction pipeline is com-
posed by four steps: 3D Pose Identification, Human
Segmentation, Silhouette Processing and VH Recon-
struction.

crowd visualization, detecting possible Human Interactions
among the VHs. These interactions are detected accord-
ing to the virtual humans distances, orientations over time
intervals, as detailed next. The inputs of this module are
basically two files: the Simulation XML and the Screenplay
XML. The first input describes the motion of the virtual
humans and the second contains specific animations that
should be played for each virtual human at a specific simu-
lation frame.

Studying and observing groups of humans, the anthropol-
ogist Edward Hall [8] proposed the proxemics concept, which
describes that the distance between people reveals their rela-
tionship. Hall divided the distances into four possible cases:
public (7.6 m.), social (3.6 m.), personal (1.2m) and inti-
mate (0.46 m.). Knowing these distances between pairs of
agents, we can play different types of animations in order to
provide more believability to the whole scene, i.e. a gesture
of hello or even to make a couple give hands to each other
according their intimacy distance.

Figure 3: Two types of Humans Interactions de-
tected by CrowdVis: the agents walking together
(top) and agents passing by each other in opposite
directions (bottom).

We detect two common situations to perform real time
interactions: i) agents walking together; ii) agents passing
by each other in opposite directions. In order to detect these

interactions we use the Hall distances, agent’s Field-Of-View
(FOV), interaction duration and speed difference. Figure 3
illustrates two types of Humans Interactions detected by the
Framework: the agents walking together (top) and agents
passing by each other in opposite directions (bottom).

In order to detect if agents are passing by each other in
opposite directions, we compute distances between agents
and verify if they are inside a circular region, as Figure 3,
according Hall’s public distance (six meters). In the case a
pair of agents are inside each other circular region, we verify
their orientations and FOV to know if they are going in op-
posite directions and are able to see each other. If the vision
angle calculated for both agents is inside a specific thresh-
old3, we consider that the agents are seeing each other. The
final step checks how long this process takes, in other words,
when the agents do not see each other anymore. The pro-
cess of verifying the event’s duration can also remove some
visualization artifacts, i.e when the interaction between the
agents last lesser than the animation itself. Such situations
can get worser when we have a higher density of agents in-
teracting with each other.

The approach to detect if agents are walking together it
is a little bit different. In this case instead of checking the
agent’s FOV, we analyze the average velocity of each one of
them. Since they are going to the same direction, they may
be not“see”each other using our FOV method. By analyzing
the average velocity, we can find out if the agents are really
walking together or just passing by each other in the same
direction. As the approach previously explained, we check
inside a circular region, but for this particular case we opted
for Hall’s social distance (two meters) and the difference of
the average velocity must be inferior than 0.1m/s, value
empirically defined in our tests.

In both approaches we check if the interaction events last
longer than six seconds, we justified this interval empiri-
cally as the minimal time for a pair of agents have any sort
of interaction between them. Figure 4 illustrates an agent
passing by other while moving in the same direction, this
case is ignored by CrowdVis using the average speed and
interaction event duration metrics.

Figure 4: Illustration of a case where agents do not
interact with each other.

It is important to highlight that the Human Interactions
do not change any aspect of the simulation. The different
visual representations performed by CrowdVis only increase
the details of the scene and represent common real-life situ-
ations. All the animations are performed only in the upper

3We adopted the common value of 120 for representing the
human field-of-view.

Figure 5: Illustration of animation used for each
case.

bones of the virtual humans, this approach allows the ani-
mation blending with the Regular Animations, such as walk
and idle animation.

Our Framework is responsible for determining which an-
imation must be played for each agent, given the agent’s
displacement within the next second of simulation. If the
displacement is smaller than 0.1m, CrowdVis is responsible
for blending the current animation to one of the available
idle animations, on the other hand if it is greater than (or
equal) 0.1m, then there are three animations that can be
played: slow walk, normal walk or jog animation (Fig. 5).
Fruin [7] described intervals for average adult walking ve-
locities. These intervals are used to decide which animation
shall be played, as listed bellow:

• idle animation [0.0m/s and 0.09m/s];

• slow walk animation [0.1m/s and 0.5m/s];

• walk animation [0.6m/s and 1.3m/s]; and

• jog animation [1.4m/s and above].

The next step is to use the simulation information re-
garding the agent’s position for calculating where the agent
should face (be oriented) at the end of each frame. While
CrowdVis aims to deal with very few and simple information
coming from crowd simulators (only the positions as a func-
tion of time), information not included. For instance, ani-
mations and orientations are not included in the Simulation
XML file. Moreover, the fact that agents are represented
by points can contribute to existing visualization artifacts
during the simulation. For instance, if we decide to calcu-
late a directional vector between the current frame and the
next one, in order to define orientations, the result is not
smooth. To achieve a better orientation for the agents, we
use time coherence. As the velocity computation analyzes
the next second of the simulation, we calculate the resultant
vector that indicates the destination that each agent desires
to face after one second. We use this data to smooth the
orientation calculation for each frame.

Even if CrowdVis is in charge of determining a set of Regu-
lar Animations to be played automatically, the user must be
able to play specific animations, which we called Screenplay
Animations, at any time during the simulation, for example:
Agent [39] Play [Jump] at Frame [348]. To allow users to
perform this, a XML script can be loaded containing only
a few set of required data: agent id, name of the animation
and start frame. When a Screenplay Animation is loaded, it
is played repeatedly in loop, so in case the user do not desire
to be in control of the agent’s animation anymore, he/she

just need to provide the animation name as clear with the
desired frame to be turned off.

The Framework must not interfere in this type of ani-
mations, in other words, the Regular Animations and the
Human Interactions animations are only calculated if there
are not Screenplay Animations being played for the current
agent.

A particular case can happen when the user loads a Screen-
play Animation for a virtual human which is evolved in a
Human Interaction. When it happens, the Framework pri-
oritizes the Screenplay Animation over the Human Inter-
action animation. It is important to reiterate that all the
processed and stored interaction behaviors can be turned off
at any moment during the visualization using the prototype
Interface.

We also provide the possibility of loading “Environmental
Agents”, these virtual humans are not part of the simulation
and can be loaded only for enriching the scene visualization.
For loading them the user just fill a set of parameters located
in our prototype interface corresponding to the agent’s po-
sition, scale, rotation and animation. (Figure 14 illustrates
environmental agents).

4.3 Audio-Visual Module
This module is responsible for several tasks in order to

improve the visual quality of CrowdVIs results. In order
to achieve good graphical results, we included a few set of
techniques related to real time rendering, usually employed
in crowds visualization and games.

The usage of shadows helps to improve the overall real-
ism of the scene and also provides visual cues that assist
the perception that anchors the agents to the ground [15].
To provide more realism we included two types of shadow-
ing technique for the agents. The user may choose one of
them or neither, removing all the shadows calculations and
optimizing the visualization performance. The simpler and
cheaper computational technique is largely used in old video
game titles, it consists in loading a plane with a “circular”
texture beneath the objects. The other shadowing technique
is much more expensive, but the visual results improves con-
siderably, we implemented our second shadowing technique
based on Shadow Map.

Another method for obtaining greater visual results was
first introduced by Gregory Ward [16], nowadays the tech-
nique is commonly known as High Dynamic Range (HDR)
rendering, it consists of creating a greater range of luminance
between the lightest and darkest areas for each frame. In
CrowdVis, we use the post process technique implemented
in the GPU, enabling it to be executed at real time frame
rates.

Figure 6 illustrates the particle systems implemented in
our framework for rain (left) and fire (right).

Music and sound effects during visualizations can increase
the immersion feeling of users. It is important to decide
which sound to play and when, so, we propose an Effect
XML file containing not only the sound file paths to be
played, but also the visual effects as rain and fire.

CrowdVis also provides the tools enabling the user to have
control of the scene lights, sky and objects. An amount of 8
lights is restricted due implementation limitations, but for
each light the user can easily configure its position, intensity
and color. For the sky the user can load an image that will

Figure 6: Illustration of the particle systems imple-
mented in CrowdVis for rain (left) and fire (right).

be placed as a sky dome4. We also created an anaglyph
rendering for 3D stereoscopic effect that can be enabled and
disabled.

As explained before (see Section 4.2), the virtual humans
are capable of self adjusting their animation speed, detect-
ing possible Human Interactions among them and playing
Screenplay Animations provided by the user. In order to do
that and achieve real time frame rates to work in a few opti-
mization techniques, such as Level-Of-Detail [5], Impostors
and Normal Maps. Figure 7 illustrate one of our virtual
humans and the three Levels-Of-Detail, low quality (left)
medium quality (center) and high quality (right), with the
respective number of triangle and polygons.

Figure 7: Illustration of one virtual human and the
three Levels-Of-Detail, low quality (left) medium
quality (center) and high quality (right), with the
respective number of triangle and polygons.

In CrowdVis, we combined the billboard impostors [15]
technique with the agent’s geometry LOD, which means
that distant agents in our visualization are replaced by view-
dependent impostors, same approach proposed by Maciel [13].
Each impostor agent contains four textures, each one with
128x128 resolution. These images are previously processed
and are stored in the Hard Drive (HD). Figure 8 illustrates
our set of impostors texture for a single agent.

4Unreachable geometry in form of a dome used for rendering
mountains, skies and any other background scene.

Figure 8: Illustration of the four impostors textures
stored in the HD. Each texture contains the resolu-
tion of 128x128 pixels.

5. RESULTS
In this section we present some results obtained with Crowd-

Vis. The Framework was implemented in C++ using: i)
Irrlicht Engine 5 and OpenGL 6 for fixed pipeline renderiza-
tion; ii) CAL3D 7 for character animation; iii) IrrKlang 8,
an audio library allowing the user to play sounds and mu-
sics using different audio file formats and iv) Spark Particle
Engine 9 for visual effects.

Follow images illustrate some examples of the features pro-
vided with CrowdVis that can be easily applied in real time
when visualizing a crowd. Figure 9 illustrates the results of
the Behavior Analysis module. We can observe the differ-
ence when the Human Interactions are disabled (left) and
enabled (right).

Figure 9: Illustration of a Human Interaction de-
tected by our Behavior Analysis module when a pair
of agents is passing by each other in opposite direc-
tions. On the left it is disabled and on the right it
is enabled.

Considering scene visualization improvements, we work
with shadows, illumination and other effects including rain
and fire for particular situations. The shadowing techniques
implemented are illustrated in Figure 11, and Figure 10 il-
lustrates the usage of the HDR effect in different scenes (on
the left the scene with the HDR rendering and on the right
the scene with the fixed pipeline rendering).

Figure 12 illustrates some of special effects that can be
applied when using our CrowdVis.

An important feature considered in our Framework is the
use of LOD to improve the visualization performance. Ta-
ble 1 presents the distances, the number of polygons and the

5http://irrlicht.sourceforge.net/
6http://www.opengl.org/
7http://home.gna.org/cal3d/
8http://www.ambiera.com/irrklang/
9http://spark.developpez.com/

Figure 10: Scene illustrating the HDR effect (right)
and the default rendering (left) with a dusky sky
background.

Figure 11: Illustration of both shadows techniques:
simple shadowing (left) and complex shadowing
(right).

Figure 12: Illustration of some of the effects pro-
vided by our Framework.

LOD being utilized in our views for only one of the virtual
humans in the scene. The distances were decided based on
quantitative and qualitative tests. These tests considered
the FPS in a crowded environment and the geometry pop-
ping artifact for the agents. Anyway, the user is able to
adjust the distances as desired, using CrowdVis interface.

Once a virtual human is loaded into CrowdVis we create a
static structure for storing them, this approach is faster than
loading dynamically the geometry for each animation frame.
Figure 13 illustrates the exact same scene and camera view
for 100 agents in two different rendering techniques without
(left) and with (right) LODs.

Here we present some results when visualizing a complete
scene. In the crowd simulator, we define a semantic environ-
ment that was populated with virtual agents. Such agents

Camera
Distance LOD Polygons FPS

[0:4] meters High Detail 2856 722
[5:9] meters Medium Detail 1254 782

[10:25] meters Low Detail 954 798
[25:above] meters Impostor 2 900

Table 1: Comparison between the distances, the
number of polygons and the LOD being utilized in
our views for only one of our virtual humans in the
scene.

Figure 13: Illustration of the exact same scene and
camera view for 100 agents in two different ren-
derings without any LOD technique (left) and with
LODs technique and impostors (right).

Figure 14: Two views of a scene in CrowdVis.

are considered as simple points in the simulation module and
their 3D coordinates are the input to CrowdVis. Figure 14
illustrates results of our framework10.

6. FINAL CONSIDERATIONS
This paper presented CrowdVis, a framework for real time

crowd visualization. With our approach, the user is able
to visualize previously generated crowd simulations without
any programming intervention.

The most part of models for crowd simulations consider
the agents as simple points or spheres. Considering this as-
pect, CrowdVis provides some features to be used to provide
good quality of the visualization results. Such factors are
concerned with agents behaviors in order to provide interac-
tions between two agents during their motion, and also the
coherent agents motion when the simulations are visualized
with virtual humans (biped agents). Also, several special ef-
fects are presented in CrowdVis considering audio and video
possibilities.

Results can show the facilities of our Framework and the

10A video with CrowdVis results is available for download in
http://www.mediafire.com/?fnbf2vzg5yi1awt

applicability for crowd visualization. Moreover, acceptable
visual results are achieved in real time.

7. REFERENCES
[1] Omitted for blinding review.

[2] P. Becheiraz and D. Thalmann. A model of nonverbal
communication and interpersonal relationship between
virtual actors. In Proceedings of the Computer
Animation, CA ’96, pages 58–, Washington, DC, USA,
1996. IEEE Computer Society.

[3] D. Chi, M. Costa, L. Zhao, and N. Badler. The emote
model for effort and shape. In Proceedings of the 27th
annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’00, pages
173–182, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[4] P. S. H. Ciechomski and D. Thalmann. Rendering
massive real-time crowds. ı̈£¡cole Polytechnique
F̈ı£¡d̈ı£¡rale de Lausanne, 2006.

[5] J. H. Clark. Hierarchical geometric models for visible
surface algorithms. Commun. ACM, 19(10):547–554,
Oct. 1976.

[6] A. de Lima Bicho. Da modelagem de plantas ı̈£¡
din̈ı£¡mica de multid̈ı£¡es: um modelo de
animäı£¡̈ı£¡o comportamental bio-inspirado. PhD
thesis, Universidade Estadual de Campinas -
UNICAMP, Campinas, 2009.

[7] J. Fruin. Pedestrian Planning and Design.
Metropolitan Association of Urban Designers and
Environmental Planners, 1971.

[8] E. T. Hall. The hidden dimension / Edward T. Hall.
Doubleday, Garden City, N.Y. :, [1st ed.] edition, 1966.

[9] J. Hamill and C. O’Sullivan. Virtual dublin - a
framework for real-time urban simulation. In Journal
of WSCG, pages 221–225, 2003.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. SIGART Bull., pages 28–29, 1972.

[11] R. Hocevar, F. Marson, V. Cassol, H. Braun,
R. Bidarra, and S. R. Musse. From their environment
to their behavior: A procedural approach to model
groups of virtual agents. In Y. Nakano, M. Neff,
A. Paiva, and M. Walker, editors, Intelligent Virtual
Agents, volume 7502 of Lecture Notes in Computer
Science, pages 370–376. Springer, 2012.

[12] L. Kavan, S. Dobbyn, S. Collins, J. Žára, and
C. O’Sullivan. Polypostors: 2d polygonal impostors for
3d crowds. In Proceedings of the 2008 symposium on
Interactive 3D graphics and games, I3D ’08, pages
149–155, New York, NY, USA, 2008. ACM.

[13] P. W. C. Maciel and P. Shirley. Visual navigation of
large environments using textured clusters. In
Proceedings of the 1995 symposium on Interactive 3D
graphics, I3D ’95, pages 95–ff., New York, NY, USA,
1995. ACM.

[14] J. Pettré, P. d. H. Ciechomski, J. Mäım, B. Yersin,
J.-P. Laumond, and D. Thalmann. Real-time
navigating crowds: scalable simulation and rendering:
Research articles. Comput. Animat. Virtual Worlds,
17:445–455, July 2006.

[15] F. Tecchia, C. Loscos, and Y. Chrysanthou.
Visualizing crowds in real-time. Computer Graphics

Forum, 21(4):753–765, 2002.

[16] G. J. Ward, F. M. Rubinstein, and R. D. Clear. A ray
tracing solution for diffuse interreflection. SIGGRAPH
Comput. Graph., 22(4):85–92, June 1988.

